A NOTE ON THE FLUX-VARIANCE SIMILARITY RELATIONSHIPS FOR HEAT AND WATER VAPOUR IN THE UNSTABLE ATMOSPHERIC SURFACE LAYER Research Note

نویسندگان

  • GABRIEL G. KATUL
  • CHENG-I HSIEH
چکیده

Atmospheric surface layer (ASL) experiments over the past 10 years demonstrate that the flux-variance similarity functions for water vapour are consistently larger in magnitude than their temperature counterpart. In addition, latent heat flux calculations using the flux-variance method do not compare as favorably to eddy-correlation measurements when compared to their sensible heat counterpart. These two findings, in concert with measured heat to water vapour transport efficiencies in excess of unity, are commonly used as evidence of dissimilarity between heat and water vapour transport in the unstable atmospheric surface layer. In this note, it is demonstrated that even if near equality in flux-profile similarity functions for heat and water vapour is satisfied, the fluxvariance similarity functions for water vapour are larger in magnitude than temperature for a planar, homogeneous, unstably-stratified, turbulent boundary-layer flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling

Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...

متن کامل

Flux-Variance Method for Latent Heat and Carbon Dioxide Fluxes in Unstable Conditions

Applied previously to momentum and heat fluxes, the present study extends the flux-variance method to latent heat and CO2 fluxes in unstable conditions. Scalar similarity is also examined among temperature (θ ), water vapour (q), and CO2 (c). Temperature is adopted as the reference scalar, leading to two feasible strategies to estimate latent heat and CO2 fluxes: the first one relies on flux-va...

متن کامل

Monin–Obukhov Similarity Functions for the Structure Parameters of Temperature and Humidity

Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity betwe...

متن کامل

Multi Objective Optimization on Insulated Residential Roof with Solar Water Heating System Using Grey Relation Analysis (RESEARCH NOTE)

In this work, a multi-objective optimization on novel insulated roof with solar water heating system at low material cost has been carried out through Taguchi based grey relational analysis technique. The novel roofs have concrete, insulating polyurethane, and a channel of water in a metallic pipe tunneling the chromium block. Chromium block is used to conduct more heat to raise the water to re...

متن کامل

Experimental Study on the Effect of Magnetic Field on Critical Heat Flux of Ferrofluid Flow Boiling in a Vertical Tube

In the present work, the critical heat flux measurements were performed for the subcooled flow boiling of pure water and magnetic nanofluids (i.e., water + 0.01 and 0.1 vol.% Fe‌‌3O4) in a vertical tube. The effect of applying an external magnetic field on the CHF variation was studied experimentally as well. The obtained results indicated that the subcooled flow boiling CHF in the vertical tub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999